Huffman树
是完全二叉树
Huffman树构造方法
假设有n个权值,则构造出的哈夫曼树有n个叶子结点。 n个权值分别设为 w1、w2、…、wn,则哈夫曼树的构造规则为:
- 将w1、w2、…,wn看成是有n 棵树的森林(每棵树仅有一个结点)
- 在森林中选出两个根结点的权值最小的树合并,作为一棵新树的左、右子树,且新树的根结点权值为其左、右子树根结点权值之和
- 从森林中删除选取的两棵树,并将新树加入森林
- 重复(2)、(3)步,直到森林中只剩一棵树为止,该树即为所求得的哈夫曼树
AcWing 148. 合并果子 原题链接
在一个果园里,达达已经将所有的果子打了下来,而且按果子的不同种类分成了不同的堆。
达达决定把所有的果子合成一堆。
每一次合并,达达可以把两堆果子合并到一起,消耗的体力等于两堆果子的重量之和。
可以看出,所有的果子经过n-1次合并之后,就只剩下一堆了。
达达在合并果子时总共消耗的体力等于每次合并所耗体力之和。
因为还要花大力气把这些果子搬回家,所以达达在合并果子时要尽可能地节省体力。
假定每个果子重量都为1,并且已知果子的种类数和每种果子的数目,你的任务是设计出合并的次序方案,使达达耗费的体力最少,并输出这个最小的体力耗费值。
例如有3种果子,数目依次为1,2,9。
可以先将1、2堆合并,新堆数目为3,耗费体力为3。
接着,将新堆与原先的第三堆合并,又得到新的堆,数目为12,耗费体力为12。
所以达达总共耗费体力=3+12=15。
可以证明15为最小的体力耗费值。
输入格式
输入包括两行,第一行是一个整数n,表示果子的种类数。
第二行包含n个整数,用空格分隔,第i个整数aiai是第i种果子的数目。
输出格式
输出包括一行,这一行只包含一个整数,也就是最小的体力耗费值。
输入数据保证这个值小于231231。
数据范围
1≤n≤100001≤n≤10000, 1≤ai≤200001≤ai≤20000
输入样例:
3
1 2 9
输出样例:
15
public static void main(String[] args) {
int n = in.nextInt();
int res = 0;
PriorityQueue<Integer> queue = new PriorityQueue<>();
while (n-- > 0) queue.add(in.nextInt());
while (queue.size() > 1) {
int sum = queue.poll() + queue.poll();
res += sum;
queue.add(sum);
}
out.println(res);
out.flush();
out.close();
}