傅芳杰

个人博客

You Deserve The Best


Huffman树

Huffman树

是完全二叉树

Huffman树构造方法

假设有n个权值,则构造出的哈夫曼树有n个叶子结点。 n个权值分别设为 w1、w2、…、wn,则哈夫曼树的构造规则为:

  1. 将w1、w2、…,wn看成是有n 棵树的森林(每棵树仅有一个结点)
  2. 在森林中选出两个根结点的权值最小的树合并,作为一棵新树的左、右子树,且新树的根结点权值为其左、右子树根结点权值之和
  3. 从森林中删除选取的两棵树,并将新树加入森林
  4. 重复(2)、(3)步,直到森林中只剩一棵树为止,该树即为所求得的哈夫曼树

AcWing 148. 合并果子 原题链接

在一个果园里,达达已经将所有的果子打了下来,而且按果子的不同种类分成了不同的堆。

达达决定把所有的果子合成一堆。

每一次合并,达达可以把两堆果子合并到一起,消耗的体力等于两堆果子的重量之和。

可以看出,所有的果子经过n-1次合并之后,就只剩下一堆了。

达达在合并果子时总共消耗的体力等于每次合并所耗体力之和。

因为还要花大力气把这些果子搬回家,所以达达在合并果子时要尽可能地节省体力。

假定每个果子重量都为1,并且已知果子的种类数和每种果子的数目,你的任务是设计出合并的次序方案,使达达耗费的体力最少,并输出这个最小的体力耗费值。

例如有3种果子,数目依次为1,2,9。

可以先将1、2堆合并,新堆数目为3,耗费体力为3。

接着,将新堆与原先的第三堆合并,又得到新的堆,数目为12,耗费体力为12。

所以达达总共耗费体力=3+12=15。

可以证明15为最小的体力耗费值。

输入格式

输入包括两行,第一行是一个整数n,表示果子的种类数。

第二行包含n个整数,用空格分隔,第i个整数aiai是第i种果子的数目。

输出格式

输出包括一行,这一行只包含一个整数,也就是最小的体力耗费值。

输入数据保证这个值小于231231。

数据范围

1≤n≤100001≤n≤10000, 1≤ai≤200001≤ai≤20000

输入样例:

3 
1 2 9 

输出样例:

15
    public static void main(String[] args) {
        int n = in.nextInt();
        int res = 0;
        PriorityQueue<Integer> queue = new PriorityQueue<>();
        while (n-- > 0) queue.add(in.nextInt());
        while (queue.size() > 1) {
            int sum = queue.poll() + queue.poll();
            res += sum;
            queue.add(sum);
        }
        out.println(res);
        out.flush();
        out.close();
    }